Accueil > Résultats de la recherche > Suite de la publication

Hydrodynamic and Hydro-geochemical Processes in the Catchment Area of Lake Retba and Their Implications in Relationship between Groundwater, Lake and Ocean

The drought that began in the Sahel in the late 70s has led to a drying up of most surface water bodies and a decrease of ground water level. In the north coast of Cap-Verde, the Retba lake is one of the few depressions that have preserved its water and experienced all the same, a very important salinization. This saline ecosystem plays an important role in the economy of the area due to the exploitation of salt deposits. However, it is now threatened by a significant reduction of the water surface. Its backup requires a good knowledge of the environment and the interactions between the different reservoirs, namely the lake, groundwater and ponds. To study the relationship between different parts of the hydro system, a network, monitoring the groundwater table including 41 village wells across the watershed, has been established. All observation points and the level of the lake were leveled with the reference 0 IGN. Water samples were taken at the wells, lake and ponds and source for chemical analysis. The results of the altimetric study indicated that the lake is below sea level, at odds of -5.26 m and a good part of the watershed is under the level of the sea. Hence its vulnerability of being invaded by the ocean water due to the difference in altitude. Water table monitoring shows different movements from one point to another due to the interference of several factors in the process of charging and discharging of the water table. Thus, some wells are only under the influence of climate parameters (rain and evaporation), while others are fed or drained by lateral flow. Water chemistry is dominated by two chemical facies: calcic and chloride facies (Ca-cl) and sodium chloride-facies (Na-Cl). Na and Cl ions control mainly the mineralization water and cationic exchange is the main factor controlling water chemistry even if other processes such as anthropic pollution could occur. These cationic exchanges reflect the intrusion of seawater into the sand aquifers. These results also show that in the late dry season, water ponds have a chemical signature very close to seawater. This shows that the ponds that are in the north of the lake is an outcrop of the Sea that feeds the lake permanently. The lake water is a mixture of seawater and groundwater whose evaporation causes sedimentation of salt exploited by local people. Monitoring of the groundwater level, the lake level and the chemical analysis shows a connection between the lake, the groundwater, the ocean and ponds.


Auteur(s) : Mansour GUEYE*, Abdoul Aziz GNING, Fatou NGOM DIOP, Raymond MALOU
Pages : 91-101
Année de publication : 2016
Revue : American Journal of Water Resources
N° de volume : 4
Type : Article
Mise en ligne par : DIOP Fatou